If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49x^2+8=19
We move all terms to the left:
49x^2+8-(19)=0
We add all the numbers together, and all the variables
49x^2-11=0
a = 49; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·49·(-11)
Δ = 2156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2156}=\sqrt{196*11}=\sqrt{196}*\sqrt{11}=14\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{11}}{2*49}=\frac{0-14\sqrt{11}}{98} =-\frac{14\sqrt{11}}{98} =-\frac{\sqrt{11}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{11}}{2*49}=\frac{0+14\sqrt{11}}{98} =\frac{14\sqrt{11}}{98} =\frac{\sqrt{11}}{7} $
| 744+w=892 | | 5m-9=3m+7m | | 22.5+180=40x-100 | | 8×-2(x+5)=14 | | 10n+6=15n-9n= | | 12=3y+9 | | 3z+5=24 | | 149+(13x+15)=180 | | -3=2–5x | | -18−3s=15 | | 2x/3+116=180 | | x+5/7=7 | | 9a-2(a-3=) | | g-954=3 | | 2g=-2 | | -0.50(b-6)=6 | | q-9=-4 | | (3+2y)2+2y=27 | | 4x+45=5x+10 | | (12+2x)(x)=310 | | x/6+19=48 | | x+0,08x=1350 | | 13=d-12 | | g*3=954 | | 10=1.1x+6.2 | | 16-2x+4x-9+128=180 | | 13=d—12 | | 10^2.5=x | | 10+x+15=10x-2x+4 | | y=1.1(60)+6.2 | | 3(i+2)=36 | | 5x+107=180 |